1. 常識科課程中的 STEM教育

香港教育學院 科學及環境學系

科學、科技及數學教育學生博覽會 Student Education Fair on Science, Technology and Mathematics

Promotion of STEM Education – Unleashing Potential In Innovation 推動STEM教育 - 發揮創意潛能

STEM教育只集中在精英學生, 還是應普及至所有學生?

二零一五年施政報告

重法治 掌機遇 作抉擇 推進民主 發展經濟 改善民生

2015 年施政報告

152. 教育局會更新及強化科學、科技及數 學課程和學習活動,並加強師資培訓,讓 中小學生充分發揮創意潛能。

教育局的政策措施

強化科學、科技及數學教育

教育局正籌劃舉辦**跨學習領域**的專題研討會,當 中設有不同主題的講座,讓科學、科技及數學學 習領域和小學常識科教師可於不 同層面和範疇 了解如何能有效地在校內推廣科學、科技、工程 和數學(STEM)教育及互相協作,強化學

生綜合學習和應用的能力

- 建立穩固的知識基礎、聯繫各科知識,發揮創意和解難能力
- 培育與科學及科技相關的多元人才,提高本港在國際上的競爭能力

學校課程持續更新:聚焦、深化、持續

更新科學教育學習領域課程 (小一至中六)

諮詢簡介

課程發展議會

二零一五年十一月

二零一六年施政報告

創新經濟 改善民生 促進和諧 繁榮共享

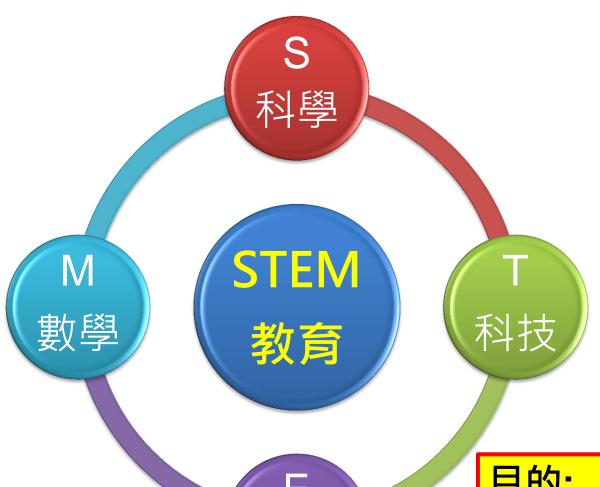
2016 年施政報告

89. 政府將更積極推動STEM教育,鼓勵學生選修有關科學、科技、工程和數學的學科

課程發展議會建議了六項策略,包括

- 更新科學、科技及數學教育學習 領域的課程
- 2. 增潤學生學習活動
- 3. 提供學與教資源
- 4. 加強學校與教師的專業發展
- 5. 加強與社區夥伴的協作
- 6. 以及進行檢視和分享良好示例

7


Reference: 立法會CB(4)480/15-16(01)號文件

STEM是新課程??

- 多元化的學與教策略
- 由美國國家科學基金會於90年代提出,涉及不同 範疇如教育、工業和經濟等
- 近年美國已將STEM教育這議題提升至國家的戰略層面(NAS, 2012),為此,美國總統奧巴馬2015年的財政預算亦投放約34億美元支持相關的項目(US Government, 2015)
- STEM 教育是科學課程架構的一部份,STEM 教育是學校課程持續更新的發展重點

References:

- National Research Council (2012). A Framework For K-12 Science Education: Practices, Crosscutting Concepts and Core Ideas. Washington, D.C.: The National Academies Press
- US Government (2015). Fiscal Year 2015 Budget Summary and Background Information, p.10.

工程

目的:

推動STEM教育是配合全球的教 育趨勢,以裝備學生應對社會及 全球因急速的經濟、科學及科技 發展所帶來的轉變和挑戰

為何推動STEM 教育

- 香港學生在科學、科技及數學表現良好的同時,大多偏重於學科學習;部分學生亦較少參與「動手」的學習活動
- 本地學校課程中的科學、科技及數學教育各學習領域 均含有與STEM 教育相關的元素,但在規劃和統籌與 STEM 相關的學習活動方面,這三個學習領域的教師 之間仍須加強協作和相互協調
- 推動STEM 教育為上述學習領域的教師提供共同合作的機會,以進一步提升學與教的效能

STEM教育

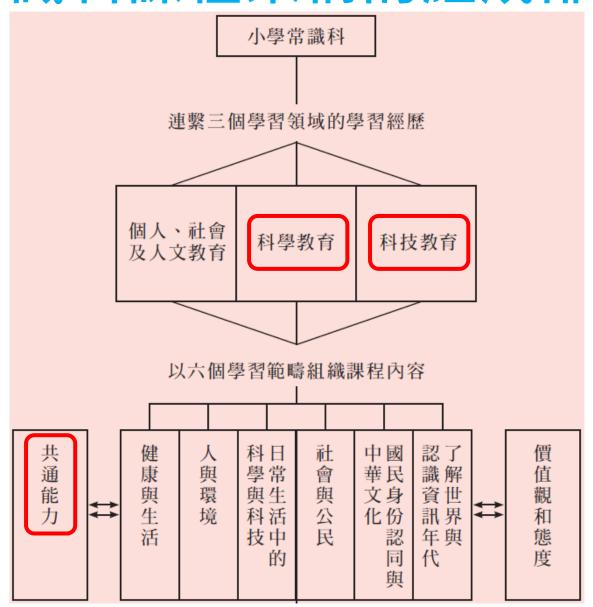
- STEM 教育的重點在於豐富和加強學與教活動
 - 例如專題研習、案例為本和問題為本學習
- 透過實際方案及創意設計解決真實的問題,學生可以有更多整合和應用科學、科技和數學教育學習領域知識與技能的機會
- 學生透過參與STEM 相關的活動,獲取學習經驗, 增強對不同STEM 範疇的興趣及了解,並發展他 們的創造力、協作及解決問題能力

學校課程經已包含與STEM 教育相關的元素,我們可進一步加強不同學習領域之間的協調和協作

強調跨範疇的融合和應用 培養學生各種*共通及高階能力*

基礎能力	思考	個人及社交能力
溝通能力	明辨性思考能力II	自我管理能力
數學能力I	創造力	自學能力Ⅲ
運用資訊科技能力	解決問題能力	協作能力

註: 在《學會學習:課程發展路向—終身學習全人發展》(2001),


高階能力

適應能力(adaptability)、溝通能力(communication skills)、非常規的解難能力(nonroutine problem solving)、自我管理及系統思維(system thinking)等(Bybee, 2010)

12

[「]稱為運算能力,□稱為批判性思考能力,□ 稱為研習能力

常識科課程架構的組成部分

更新的小學常識科課程

- 著重日常生活和科學與科技的連繫(例如低碳生活、 全球暖化)
- 透過<u>科學探究</u> (例如公平測試),提升學生的基本 科學過程技能,包括:觀察、量度、分類和傳意, 從而加強中小學課程的銜接。
- 增潤有關應用科學與科技來*解決日常生活問題*的學 與教活動(例如日常生活中的能源使用、簡單機械 的運用)
- 促進教學法並透過不同的學習活動應用知識和技能 (例如科學探究、專題研習)

Reference: 課程發展議會(2015)。學校課程持續更新:聚焦、深化、持續 - 更新科學教育學習領域課程(小一至中六)

STEM 教育的目標

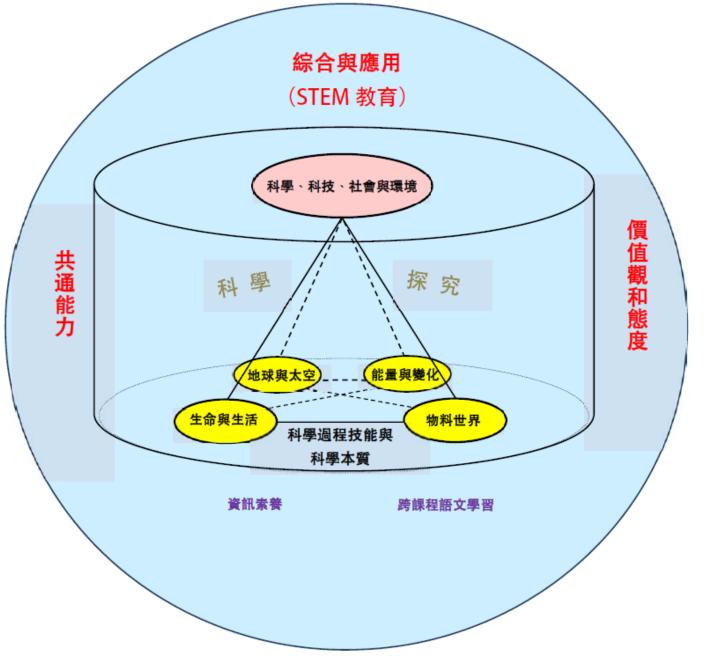
- 加強科學教育、科技教育和數學教育之間的協調和協作
- 在科學、科技及數學範疇讓學生建立穩固的知識基礎, 提升學習興趣
- 強化學生的
 - 1. **綜合和應用知識與技能的能力**,包括「動手」技能
 - 2. 創造力
 - 3. 協作和解決問題的能力
- 強化科學、科技和數學教育,並在科學和科技範疇 培養不同層面具備不同能力的多元人才

Reference: 課程發展議會(2015)。學校課程持續更新: 聚焦、深化、持續 - 更新科學教育學習領域課程(小一至中六)

知識

建立穩固的知識基礎, 並強化綜合和應用 知識與技能的能力

技能

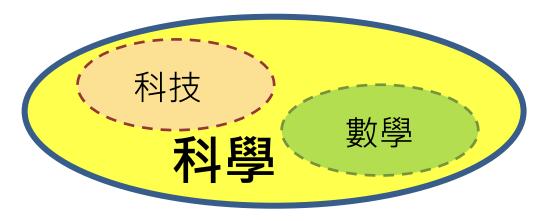

培養創造力、協作和解決 問題能力,並推動創新 培養多元人才 以提升香港的 國際競爭力

態度

發展正面的價值觀和 積極的態度

科學探究 與 STEM

- 1. 探究主題引領了學生從<mark>科學角度探究</mark>與自己生活 有密切關係的社會議題,如
 - 廢物處理和能源效益
- 2. 學生把**科學<u>知識轉移</u>於日常生活中應用**,提升了 學習的興趣及價值
- 3. 在探究過程中,學生**應用各種科學知識來達成探 究目標**,並深深體會到**STEM**的知識對**解決**生活及 學習**問題**的重要性
 - 如運用**數學知識**計算節能效率、**運用科技**進行準確的測 試等



Reference: 課程發展議會(2015)。學校課程持續更新: 聚焦、深化、持續 - 更新科學教育學習領域課程(小一至中六)

STEM學習活動的建議模式

模式一

 以個別學習領域中的課題為學習活動的基礎,融入 其他學習領域的相關學習元素

- 在科學課題「力與運動」中,學習火箭發射的科學原理和掌握相關知識外,可加入:
 - <u>科技</u>及<u>數學</u>學習領域的相關學習元素(例如:運算、代數、設計與製作、選擇製作模型的材料等),以豐富學習活動和學生的學習經歷

STEM學習活動的建議模式

模式二

• 以專題研習讓學生*綜合*各學習領域的學習元素

學生嘗試以可行方法和富創意的設計解決生活化的問題,主動引入並綜合運用各學科學習到的知識和技能,靈活運用於真實的情境之中解決問題

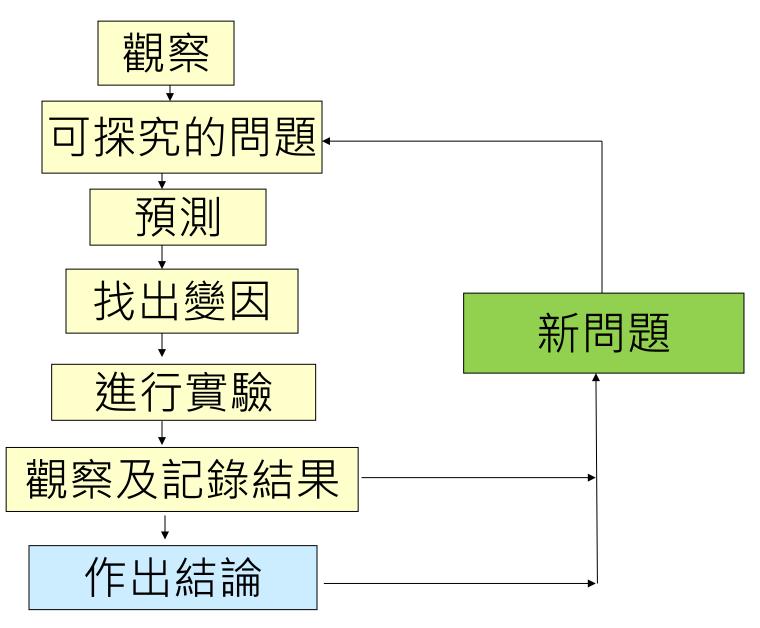
例子一:KS1花灑設計

核心學習元素: 保護環境及節省資源的方法

我們將設計一個供初小學生參與的花灑設計活動,讓學生 <u>關注環境及善用天然資源,並了解自然資源的可貴</u>,以融合 科學教育、科技教育及數學教育,達致STEM教育的目標

花灑設計活動與常識科的關係

學習重點		第一學習階段(KS1)		第二學習階段(KS2)
知識	1.	了解本地人文活動和自然環 境可能互相影響	1. 2. 3.	認識地球蘊藏豐富的資源 了解人們對環境保育的責任,珍 惜和善用地球資源 知道科技發展在日常生活的應用 及影響
技能	1. 2. 3.	細心觀察周遭的環境 自行或與友儕協作,識別問 題及設計可行的解決方案 以日常物料設計及製作人工 物品	 2. 3. 	策畫並進行和環境有關的簡單探究活動 適當地使用天然資源,建立促進可持續發展的生活方式 運用不同的物料設計和製作模型, 並測試所製成模型的功能及特性
態度和價值觀	 1. 2. 3. 4. 	關注環境及善用天然資源 表現對保護環境與改善環境 的關注,並付諸行動 意識到科學及科技與日常生 活的緊密關係 在科技學習活動中,欣賞產 品的功能及外觀	 2. 	認同保育環境的重要性,並積極 參與環境保育 接受建基於證據的決定及推論 22


討論:如何利用以下工具設計STEM活動

材料

- 益力多膠樽
- 玻璃
- 茄汁
- 碎石
- 布碎

- 海綿
- 電線
- 膠布
- 計時器

建議探究模式

活動概要

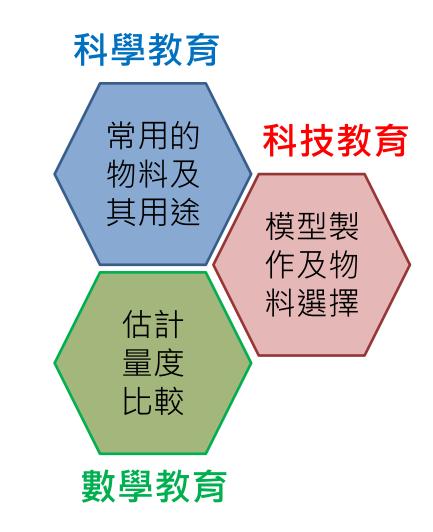
- 探究意念/目的:
- 材料:
- 科學原理:
- 假設:
- 研究方法:
- 預期結果:

能否達到STEM教育的目標?

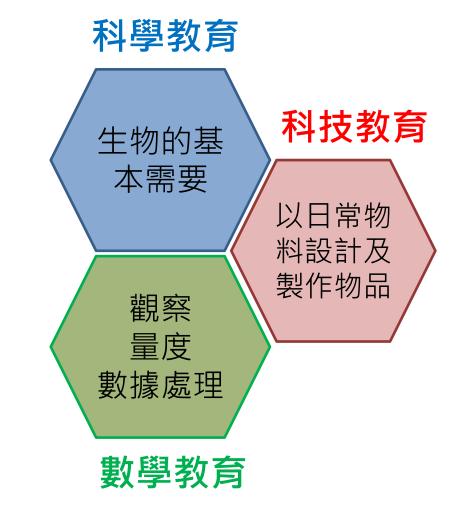
• 模式一:

環保科技

量度 數據處理


環境及可持續發展

小組討論工作紙


• 加強科學教育、科技教育和數學教育的協調:

科學教育	科技教育	數學教育
1. 低碳生活、 全球暖化	1. 模型製作及物料選擇	1. 觀察、估計與量度2. 數據的收集和整理
2. 環境保護及善用 天然資源	2. 科技發展及日 常生活的應用	3. 誤差及平均數
3. 節省資源的方法		解決問題能力 和創造力 26

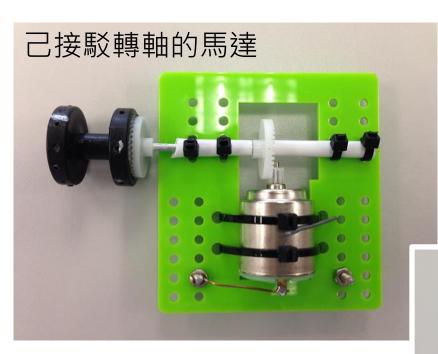
其他STEM活動(KS1):百變椅子

其他STEM活動(KS1):魚菜共生

其他STEM活動(KS1)

- 1. 污水過濾
- 2. 聲音阻隔
- 3. 浮和沉
- 4. 再造紙

例子二:KS2風車製作


- 已接駁發電機的風車,能把風的動能轉發為電力
- 根據世界風能協會(WWEA)在2014年的半年報告, 全球風力發電容量能達至大約全球電力需求的4%
- 在丹麥,高於40%的電力是由風能產生

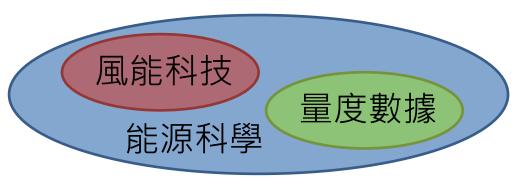
丹麥的離岸式海上風力發電廠

香港南丫風采發電站 - 每年平均可生產一百萬度電力,大約為200個家庭的全年用電量

例子二:KS2風車製作

• 討論:如何利用以下工具設計STEM活動

可配合其他工具

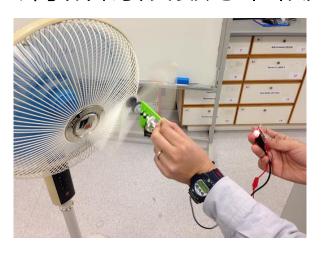

• 活動應以模式一或二進行?答:模式一/模式二

風車製作活動與常識科的關係

學習重點	第	一學習階段(KS1)	第.	二學習階段(KS2)
知識	 2. 	認識能源及知道它們在日常生活中的用途了解節約能源的需要	 1. 2. 3. 	能量的來源 能量轉變 知道科技發展在日常生 活的應用及影響
技能	1.	自行或與友儕協作,識別問題及 設計可行的解決 方案	 2. 	進行探索和探究, 掌握 簡單的科學探究能力 運用不同的物料設計和 製作模型, 並測試所製 成模型的功能及特性
態度和價 值觀	1.	在科技學習活動中, 欣賞產品的功能及外觀	1.	接受建基於證據的決定及推論

能否達到STEM教育的目標?

• 模式一:

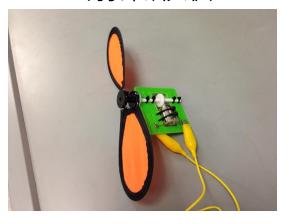

加強科學教育、科技教育和數學教育的協調:找
 出風車及風力發電機的科學,科技及數學原素:

科學教育			科技教育	數學教育		
1.	了解節約能源的 需要	1.	模型製作及物料 選擇	1.	觀察、估計與量 度	
2.	能量的來源及其 在日常生活中的 用途	2.3.	電力的使用 科技發展及日常 生活的應用	 3. 	數據的收集和整 理 誤差及平均數	
3.	能量轉變				33	

其他風車製作活動的可變參數

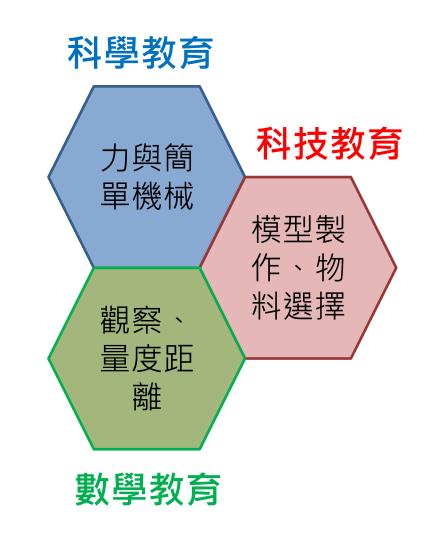
• 如學生對測量伏特計的讀數感困難,可以LED燈

的強弱取代:


風速的改變

• 其他的變量,如:

扇葉大小



扇葉形狀

其他STEM例子: KS2 水火箭

總結

- STEM教育有助加強科學教育、科技教育和數學教育之間的 *協調和協作*。
- STEM教育可<u>強化</u>學生的綜合和應用知識與技能的能力,包括「動手」技能、創造力、協作和解決問題的能力
- 可以兩種不同的模式設計STEM活動:
- 1. 建基於一個學習領域主題的活動
- 2. 透過專題研習讓學生綜合不同學習領域
- STEM學習活動的例子:風車製作