友情提示:380元/半年,儿童学编程,就上码丁实验室。
本次应用使用 NodeMcu 连接讯飞的 XFS5152CE 语音合成芯片(开发板)并且连接一个小型功放作为 MQTT TTS 设备。除了 使用这种 TTS ,对于 HomeAssistant 来说,还有许多的 TTS 服务,如百度TTS、谷歌 TTS、微软 TTS ,之所以做这么一款设备,是因为这样可以实现一个纯局域网环境下的智能家居设备,当然也许还有其他好处,此处不表。
代码中使用的 GPIO 可通过下图进行进行查询。在此再次提醒诸位使用 Arduino IDE 为 NodeMcu 编程,NodeMcu 的引脚号与 GPIO 标号不一致。不要再出现明明程序是对的,引脚输出缺不正确这种情况了。

使用硬件:
MicroUSB 母头两个(作为供电接口)
NodeMcu(MQTT 订阅者,并且进行编码转换,将转换后的字符串以指定格式发送给 TTS 芯片)
Arduino Pro Mini
3MM 8*8点阵 1088BS
HC-SR505 迷你小型人体感应模块
科大讯飞 XFS5152CE 语音合成芯片(开发板)
小型功放板(注意输入电压,如果电压不是5.0V 则需要电源模块(升压模块))
4Ω 3W 喇叭两个(功放板要能推得动)
3.5 mm 音频接头公头一个
运行 HomeAssistant 服务设备
运行 MQTT 服务设备(也可将此服务与 HomeAssistant 安装在同一设备上,或者使用其他公司提供的 MQTT 服务器)
MQTT 设备接线图

以下为 NodeMcu 代码:
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <SoftwareSerial.h>
#define MQTT_VERSION MQTT_VERSION_3_1_1
#define iFlyTek_ResetPin 12
#define iFlyTek_RDYPin 14
#define WIFI_RX 5
#define WIFI_TX 4
// Wifi: SSID 和 密码
const char* WIFI_SSID = "YourWifiSSID"; //改成你的 WiFi 名称
const char* WIFI_PASSWORD = "YourWifiPassword"; //改成你的 WiFi 密码
// MQTT: ID, 服务端 IP, 端口号, 用户名 和 密码
const PROGMEM char* MQTT_CLIENT_ID = "ESP1";
const PROGMEM char* MQTT_SERVER_IP = "192.168.31.202"; //改成你的 MQTT 服务 IP 地址
const PROGMEM uint16_t MQTT_SERVER_PORT = 1883; //改成你的 MQTT 服务端口号
const PROGMEM char* MQTT_USER = "YourMQTTUserName"; //改成你的 MQTT 服务用户名
const PROGMEM char* MQTT_PASSWORD = "YourMQTTUserPassword"; //改成你的 MQTT 服务密码
// MQTT: 主题
const char* MQTT_iFlyTek_TOPIC = "mqtt/ESP1/iFlyTek";
const char* MQTT_BodyState_TOPIC = "mqtt/ESP1/BodyState";
const char* MQTT_LED_TOPIC = "mqtt/ESP1/LEDInfo";
int bodySensor = 0;
long int lastSendTime, Now;
String BodyPubData = "{"BodyState":"BODY_STATE"}";
WiFiClient wifiClient;
PubSubClient client(wifiClient);
SoftwareSerial MySerial(softSerial_RX, softSerial_TX);
//芯片复位
void reset_iFlyTek()
{
digitalWrite(iFlyTek_ResetPin, LOW);
delay(50);
digitalWrite(iFlyTek_ResetPin, HIGH);
}
//用来获取该字符在 UTF8 格式中占用的内存大小
int get_utf8_size(const char pInput)
{
char c = pInput;
if (c < 0x80) return 1;
if (c >= 0x80 && c < 0xC0) return 0;
if (c >= 0xC0 && c < 0xE0) return 2;
if (c >= 0xE0 && c < 0xF0) return 3;
return -1;
}
//获取整个字符数组以 UNICODE 编码时占用的大小
unsigned int get_output_size(char* ch, int size)
{
unsigned int outSize = 0;
char* input = ch;
int inputPos = 0;
while (inputPos < size)
{
int utf8Size = get_utf8_size(*input);
if (utf8Size > 0)
{
outSize = outSize + 2;
input = input + utf8Size;
inputPos = inputPos + utf8Size;
}
else
{
outSize = 0;
break;
}
}
return outSize;
}
//以小端形式编码
//将单个 UTF8 编码的字符转换成以 UNICODE 编码
int utf8_to_unicode(const char* pInput, char *Unic)
{
// b1 表示UTF-8编码的pInput中的高字节, b2 表示次高字节, ...
char b1, b2, b3;
*Unic = 0x0; // 把 *Unic 初始化为全零
int utfbytes = get_utf8_size(*pInput);
char *pOutput = Unic;
switch ( utfbytes )
{
case 1:
*pOutput = *pInput;
*(pOutput + 1) = 0x00;
utfbytes = 1;
break;
case 2:
b1 = *pInput;
b2 = *(pInput + 1);
if ( (b2 & 0xE0) != 0x80 )
return 0;
*pOutput = (b1 << 6) + (b2 & 0x3F);
*(pOutput + 1) = (b1 >> 2) & 0x07;
break;
case 3:
b1 = *pInput;
b2 = *(pInput + 1);
b3 = *(pInput + 2);
if ( ((b2 & 0xC0) != 0x80) || ((b3 & 0xC0) != 0x80) )
return 0;
*pOutput = (b2 << 6) + (b3 & 0x3F);
*(pOutput + 1) = (b1 << 4) + ((b2 >> 2) & 0x0F);
break;
default:
return 0;
break;
}
return utfbytes;
}
void sendString(String string)
{
int size = string.length();
size = size + 1;
char buffer[size];
string.toCharArray(buffer, size);
char* input = buffer;
size = size - 1;
unsigned int outSize = get_output_size(buffer, size);
if (outSize > 0)
{
char outCh[outSize];
char* output = outCh;
int inputPos = 0;
while (inputPos < size)
{
int uft8Size = get_utf8_size(*input);
if (uft8Size > 0)
{
utf8_to_unicode(input, output);
output = output + 2;
input = input + uft8Size;
inputPos = inputPos + uft8Size;
}
else
{
break;
}
}
unsigned char frameHeader = 0xFD;
unsigned char temp = 0x00;
unsigned int frameLength = outSize + 2;
unsigned char dataHeader[2] = {0x01, 0x03};
MySerial.write(frameHeader);
if (frameLength < 255)
{
MySerial.write(temp);
}
MySerial.write(frameLength);
MySerial.write(dataHeader[0]);
MySerial.write(dataHeader[1]);
for (int index = 0; index < outSize ; ++index)
{
MySerial.write(outCh[index]);
}
}
}
void dealLedData(String string)
{
Serial.print(string);
}
// 接收来自 MQTT 的消息
void callback(char* p_topic, byte* p_payload, unsigned int p_length) {
String payload;
for (uint8_t i = 0; i < p_length; i++) {
payload.concat((char)p_payload[i]);
}
// handle message topic
if (String(MQTT_iFlyTek_TOPIC).equals(p_topic)) {
sendString (payload);
}
else if (String(MQTT_LED_TOPIC).equals(p_topic)) {
dealLedData (payload);
}
}
void reconnect() {
while (!client.connected()) {
if (client.connect(MQTT_CLIENT_ID, MQTT_USER, MQTT_PASSWORD)) {
delay(100);
boolean sub_iFlyTek_OK = client.subscribe(MQTT_iFlyTek_TOPIC);
boolean sub_LED_OK = client.subscribe(MQTT_LED_TOPIC);
if (sub_LED_OK && sub_iFlyTek_OK)
sendString(String("初始化成功"));
} else {
delay(5000);
}
}
}
void pushBodyState()
{
Now = millis();
if (Now - lastSendTime > 100) {
BodyPubData = "{"BodyState":"BODY_STATE"}";
bodySensor = digitalRead(Human1_DI);
switch (bodySensor)
{
case 1:
BodyPubData.replace("BODY_STATE", "Yes");
break;
case 0:
BodyPubData.replace("BODY_STATE", "No");
break;
default:
BodyPubData.replace("BODY_STATE", "No");
}
client.publish(MQTT_BodyState_TOPIC, BodyPubData.c_str(), true);
lastSendTime = Now;
}
}
void setup() {
Serial.begin(9600);
MySerial.begin(9600);
pinMode(iFlyTek_ResetPin, OUTPUT);
pinMode(Human1_DI, INPUT);
reset_iFlyTek();
delay(100);
sendString(String("正在初始化,请稍后"));
delay(100);
WiFi.mode(WIFI_STA);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
}
client.setServer(MQTT_SERVER_IP, MQTT_SERVER_PORT);
client.setCallback(callback);
Now = millis();
lastSendTime = Now;
}
void loop() {
if (!client.connected()) {
reconnect();
}
client.loop();
pushBodyState();
}
Arduino Pro mini 代码:
#include <FrequencyTimer2.h>
//嘴巴
#define OPEN1 {
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 1, 0, 0, 0, 0, 1, 0},
{1, 0, 0, 0, 0, 0, 0, 1},
{1, 0, 0, 0, 0, 0, 0, 1},
{0, 1, 0, 0, 0, 0, 1, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0}
}
#define OPEN2 {
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 1, 1, 1, 1, 1, 0},
{1, 0, 0, 0, 0, 0, 0, 1},
{1, 0, 0, 0, 0, 0, 0, 1},
{0, 1, 1, 1, 1, 1, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0}
}
#define CLOSE {
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0}
}
//天气
#define w_good {
{0, 1, 0, 0, 0, 1, 0, 0},
{1, 0, 1, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 1, 0},
{0, 1, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 0, 0, 0}
}
#define w_bad {
{0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 1, 0, 1, 1, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 0, 0, 0},
{0, 1, 0, 0, 0, 1, 0, 0},
{1, 0, 0, 0, 0, 0, 1, 0}
}
//数字
#define num_0 {
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
#define num_1 {
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0}
}
#define num_2 {
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
#define num_3 {
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
#define num_4 {
{0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 1, 0, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0},
{0, 1, 0, 0, 1, 0, 0, 0},
{0, 1, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0}
}
#define num_5 {
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
#define num_6 {
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
#define num_7 {
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0}
}
#define num_8 {
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
#define num_9 {
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0}
}
//#define pin_body 19
#define pin_TTS 3
byte col = 0;
byte leds[8][8];
bool readySpeak = true;
String strRecv = "";
long now = 0;
long lastRecv = 0;
long lastTTS = 0;
long lastWeather = 0;
long lastTime = 0;
short lastTTSIndex = 0;
short lastTimeIndex = 0;
bool newDataComing = false;
bool weatherRecvOK = false;
bool timeRecvOK = false;
short weatherIndex = -1;
short timeArray[4] = { -1, -1, -1, -1};
const short pins[16] = {5, 4, 19, 18, 14, 15, 16, 17, 13, 12, 11, 10, 9, 8, 7, 6 };
const short rows[8] = {pins[15], pins[14], pins[10], pins[5], pins[9], pins[3], pins[2], pins[12]};
const short cols[8] = {pins[8], pins[13], pins[7], pins[11], pins[0], pins[6], pins[1], pins[4]};
const PROGMEM int numPatterns = 4;
//const PROGMEM byte patterns[numPatterns][8][8] = { CLOSE, OPEN2, OPEN1, OPEN2 };
byte patterns[numPatterns][8][8] = { CLOSE, OPEN2, OPEN1, OPEN2 };
byte weatherCondition[2][8][8] = { w_good, w_bad };
byte Time_serial[10][8][8] = {
num_0 , num_1 , num_2 , num_3 , num_4 , num_5 , num_6 , num_7 , num_8 , num_9
};
void setup() {
Serial.begin(9600);
for (int i = 0; i < 16; i++) {
pinMode(pins[i], OUTPUT);
}
// set up cols and rows
for (int i = 1; i <= 8; i++) {
digitalWrite(cols[i - 1], LOW);
digitalWrite(rows[i - 1], LOW);
}
pinMode(pin_TTS, INPUT);
clearLeds();
FrequencyTimer2::disable();
FrequencyTimer2::setPeriod(2000);
FrequencyTimer2::setOnOverflow(display);
now = millis();
lastRecv = now;
lastTTS = now;
lastWeather = now;
lastTime = 0;
lastTTSIndex = 0;
lastTimeIndex = 0;
}
void recvWeatherTime()
{
if (Serial.available() > 0) {
char str = char(Serial.read());
strRecv = strRecv + str;
lastRecv = millis();
newDataComing = true;
timeRecvOK = false;
weatherRecvOK = false;
delay(2);
}
else {
now = millis();
if ((newDataComing == true) && (now - lastRecv > 100)) {
int index = strRecv.indexOf(",");
if (-1 != index)
{
String _weather = strRecv.substring(0, index);
_weather.replace("weather:", "");
_weather.replace(",", "");
_weather.replace(" ", "");
if (_weather.equals("clear-night"))
weatherIndex = 0;
else if (_weather.equals("cloudy"))
weatherIndex = 0;
else if (_weather.equals("fog"))
weatherIndex = 1;
else if (_weather.equals("hail"))
weatherIndex = 1;
else if (_weather.equals("lightning"))
weatherIndex = 1;
else if (_weather.equals("lightning-rainy"))
weatherIndex = 1;
else if (_weather.equals("partlycloudy"))
weatherIndex = 0;
else if (_weather.equals("pouring"))
weatherIndex = 1;
else if (_weather.equals("rainy"))
weatherIndex = 1;
else if (_weather.equals("snowy"))
weatherIndex = 1;
else if (_weather.equals("snowy-rainy"))
weatherIndex = 1;
else if (_weather.equals("sunny"))
weatherIndex = 0;
else if (_weather.equals("windy"))
weatherIndex = 1;
else if (_weather.equals("windy-variant"))
weatherIndex = 0;
else if (_weather.equals("exceptional"))
weatherIndex = 0;
else
weatherIndex = -1;
if ((weatherIndex >= 0) && (weatherIndex < 2))
weatherRecvOK = true;
String _timeString = strRecv.substring(index + 1);
_timeString.replace("time:", "");
_timeString.replace(":", "");
_timeString.replace(",", "");
_timeString.replace(" ", "");
String s_hour = _timeString.substring(0, 2);
int hour = s_hour.toInt();
String s_minute = _timeString.substring(2);
int minute = s_minute.toInt();
if ((hour >= 0 && hour < 24) && (minute >= 0) && (minute <= 59))
{
timeArray[0] = hour / 10 ;
timeArray[1] = hour % 10 ;
timeArray[2] = minute / 10 ;
timeArray[3] = minute % 10 ;
timeRecvOK = true;
}
}
strRecv = "";
newDataComing = false;
}
}
}
void loop() {
recvWeatherTime();
bool TTSState = digitalRead(pin_TTS);
// bool TTSState = true;
if (TTSState)
{
// FrequencyTimer2::setOnOverflow(display);
now = millis();
if (now - lastTTS > 500)
{
if (lastTTSIndex >= numPatterns)
lastTTSIndex = 0;
setPatternTTS(lastTTSIndex);
FrequencyTimer2::setOnOverflow(display);
lastTTS = now;
lastTTSIndex ++;
lastTime = now;
lastWeather = now;
}
lastTimeIndex = 0;
}
else
{
lastTTSIndex = 0;
if (timeRecvOK && weatherRecvOK)
{
now = millis();
if (lastTimeIndex < 4)
{
setPatternTime(lastTimeIndex);
FrequencyTimer2::setOnOverflow(display);
lastWeather = now;
if ((now - lastTime) > 1000)
{
lastTime = now;
lastWeather = now;
lastTimeIndex ++;
}
}
else
{
FrequencyTimer2::setOnOverflow(display);
setPatternWeather(weatherIndex);
if (now - lastWeather > 5000)
{
lastTimeIndex = 0;
timeRecvOK = false;
weatherRecvOK = false;
clearLeds();
FrequencyTimer2::setOnOverflow(0);
}
}
}
else
{
FrequencyTimer2::setOnOverflow(0);
clearLeds();
display();
now = millis();
lastTime = now;
}
}
}
void clearLeds() {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
leds[i][j] = 0;
}
}
}
void setPatternWeather(int pattern) {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
leds[i][j] = weatherCondition[pattern][i][j];
}
}
}
void setPatternTime(int pattern) {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
short index = timeArray[pattern];
leds[i][j] = Time_serial[index][i][j];
}
}
}
void setPatternTTS(int pattern) {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
leds[i][j] = patterns[pattern][i][j];
}
}
}
// Interrupt routine
void display() {
digitalWrite(cols[col], LOW); // Turn whole previous column off
col++;
if (col == 8) {
col = 0;
}
for (int row = 0; row < 8; row++) {
if (leds[col][7 - row] == 1) {
digitalWrite(rows[row], LOW); // Turn on this led
}
else {
digitalWrite(rows[row], HIGH); // Turn off this led
}
}
digitalWrite(cols[col], HIGH); // Turn whole column on at once (for equal lighting times)
}
HomeAssistant 配置:
weather:
- platform: yweather
woeid: 2151849
binary_sensor:
- platform: mqtt
state_topic: "mqtt/ESP1/BodyState"
name: 'TTS_BodyState'
payload_on: "Yes"
payload_off: "No"
device_class: motion
value_template: '{{ value_json.BodyState }}'
sensor:
- platform: time_date
display_options:
- 'date_time'
- 'time'
- 'date'
- platform: template
sensors:
template_arduino_motion:
friendly_name: "TTS 人体传感器"
value_template: "{% if is_state('binary_sensor.tts_bodystate', 'on') %}有人{% else %}无人{% endif %}"
input_text:
iflytek:
name: iFlyTek
min: 0
max: 5000
mqtt:
#改成你的 MQTT 服务端口号
broker: 192.168.31.202
#改成你的 MQTT 服务端口号
port: 1883
#改成你的 MQTT 服务用户名
username: YourMQTTUserName
#改成你的 MQTT 服务密码
password: YourMQTTUserPassword
automation: !include automations.yaml
automations.yaml 文件:
- id: iFlyTek
alias: iFlyTekTTS
trigger:
platform: state
entity_id: input_text.iflytek
action:
service: mqtt.publish
data_template:
topic: "mqtt/ESP1/iFlyTek"
payload: "{{states.input_text.iflytek.state}}"
- id: Someone
alias: SomeoneInFront
trigger:
- entity_id: binary_sensor.tts_bodystate
from: 'off'
platform: state
to: 'on'
action:
service: mqtt.publish
data_template:
topic: "mqtt/ESP1/LEDInfo"
payload: "weather:{{states('weather.yweather')}},time:{{states('sensor.time')}}"
后续我会将 Arduino 代码封装成库,方便直接调用。这个坑留着以后填。
实际效果图:

自己做了个小盒子把一堆零件装在这个小盒子里。
HomeAssistant 输入框输入内容后,TTS 播放该内容,同时显示一下时间和天气(好与坏,笑脸与哭脸表示)。或者其他任何方式通过MQTT协议发送该主题的内容,TTS也可以播放。
当人体传感器的状态从无人到有人后,LED 点阵显当前时间(每个数字 1 秒),之后根据天气状况显示五秒的哭脸或者笑脸。
当然这种方式的 TTS 播报效果跟百度的在线 TTS 效果差很多。