最新消息:

ROS入门教程-1.1.11 编写简单的消息发布器和订阅器 (C++ catkin)

ROS1/一代机器人系统 少儿编程 1614浏览 0评论
ROS入门教程

ROS入门教程-编写简单的消息发布器和订阅器(C++ catkin)

说明:

  • 本教程将介绍如何编写C++的发布器节点和订阅器节点。

目录

  • 编写发布器节点
    • 源代码
    • 代码解释
  • 编写订阅器节点
    • 源代码
    • 代码解释
  • 编译节点
  • 编译节点

编写发布器节点

  • "节点(Node)" 是ROS中指代连接到ROS网络的可执行文件的术语。

  • 接下来,我们将会创建一个发布器节点("talker"),它将不断的在ROS网络中广播消息。

  • 转移到之前教程在catkin工作空间所创建的beginner_tutorials package路径下:

    cd ~/catkin_ws/src/beginner_tutorials

源代码

  • 在beginner_tutorials package路径下创建src目录:
mkdir -p ~/catkin_ws/src/beginner_tutorials/src
  • 这个目录将会存储beginner_tutorials package的所有源代码.

  • 在beginner_tutorials package里创建src/talker.cpp文件,并粘贴如下代码:

#include "ros/ros.h"
#include "std_msgs/String.h"

#include <sstream>

/**
 * This tutorial demonstrates simple sending of messages over the ROS system.
 */
int main(int argc, char **argv)
{
  /**
   * The ros::init() function needs to see argc and argv so that it can perform
   * any ROS arguments and name remapping that were provided at the command line. For programmatic
   * remappings you can use a different version of init() which takes remappings
   * directly, but for most command-line programs, passing argc and argv is the easiest
   * way to do it.  The third argument to init() is the name of the node.
   *
   * You must call one of the versions of ros::init() before using any other
   * part of the ROS system.
   */
  ros::init(argc, argv, "talker");

  /**
   * NodeHandle is the main access point to communications with the ROS system.
   * The first NodeHandle constructed will fully initialize this node, and the last
   * NodeHandle destructed will close down the node.
   */
  ros::NodeHandle n;

  /**
   * The advertise() function is how you tell ROS that you want to
   * publish on a given topic name. This invokes a call to the ROS
   * master node, which keeps a registry of who is publishing and who
   * is subscribing. After this advertise() call is made, the master
   * node will notify anyone who is trying to subscribe to this topic name,
   * and they will in turn negotiate a peer-to-peer connection with this
   * node.  advertise() returns a Publisher object which allows you to
   * publish messages on that topic through a call to publish().  Once
   * all copies of the returned Publisher object are destroyed, the topic
   * will be automatically unadvertised.
   *
   * The second parameter to advertise() is the size of the message queue
   * used for publishing messages.  If messages are published more quickly
   * than we can send them, the number here specifies how many messages to
   * buffer up before throwing some away.
   */
  ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);

  ros::Rate loop_rate(10);

  /**
   * A count of how many messages we have sent. This is used to create
   * a unique string for each message.
   */
  int count = 0;
  while (ros::ok())
  {
    /**
     * This is a message object. You stuff it with data, and then publish it.
     */
    std_msgs::String msg;

    std::stringstream ss;
    ss << "hello world " << count;
    msg.data = ss.str();

    ROS_INFO("%s", msg.data.c_str());

    /**
     * The publish() function is how you send messages. The parameter
     * is the message object. The type of this object must agree with the type
     * given as a template parameter to the advertise<>() call, as was done
     * in the constructor above.
     */
    chatter_pub.publish(msg);

    ros::spinOnce();

    loop_rate.sleep();
    ++count;
  }


  return 0;
}

代码解释

  • 现在,我们来分段解释代码.

    #include "ros/ros.h"

  • ros/ros.h是一个实用的头文件,它引用了ROS系统中大部分常用的头文件,使用它会使得编程很简便。

#include "std_msgs/String.h"
  • 这引用了std_msgs/String 消息, 它存放在std_msgs package里,是由String.msg文件自动生成的头文件。
  • 需要更详细的消息定义,参考msg页面.
  ros::init(argc, argv, "talker");
  • 初始化ROS。它允许ROS通过命令行进行名称重映射——目前,这不是重点。
  • 同样,我们也在这里指定我们节点的名称——必须唯一。
  • 这里的名称必须是一个base name,不能包含/。
ros::NodeHandle n;
  • 为这个进程的节点创建一个句柄。
  • 第一个创建的NodeHandle会为节点进行初始化,最后一个销毁的会清理节点使用的所有资源。
ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);
  • 告诉master我们将要在chatter topic上发布一个std_msgs/String的消息。
  • 这样master就会告诉所有订阅了chatter topic的节点,将要有数据发布。
  • 第二个参数是发布序列的大小。
  • 在这样的情况下,如果我们发布的消息太快,缓冲区中的消息在大于1000个的时候就会开始丢弃先前发布的消息。
NodeHandle::advertise() 
  • 返回一个 ros::Publisher对象,它有两个作用:

      1. 它有一个publish()成员函数可以让你在topic上发布消息;
      1. 如果消息类型不对,它会拒绝发布。
ros::Rate loop_rate(10);
  • ros::Rate对象可以允许你指定自循环的频率。
  • 它会追踪记录自上一次调用Rate::sleep()后时间的流逝,并休眠直到一个频率周期的时间。
  • 在这个例子中,我们让它以10hz的频率运行。
int count = 0;
while (ros::ok())
{
  • roscpp会默认安装一个SIGINT句柄,它负责处理Ctrl-C键盘操作——使得ros::ok()返回FALSE。

  • ros::ok()返回false,如果下列条件之一发生:

    • SIGINT接收到(Ctrl-C)
    • 被另一同名节点踢出ROS网络
    • ros::shutdown()被程序的另一部分调用
    • 所有的ros::NodeHandles都已经被销毁
  • 一旦ros::ok()返回false, 所有的ROS调用都会失效。
std_msgs::String msg;

std::stringstream ss;
ss << "hello world " << count;
msg.data = ss.str();
  • 我们使用一个由msg file文件产生的‘消息自适应’类在ROS网络中广播消息。
  • 现在我们使用标准的String消息,它只有一个数据成员"data"。
  • 当然你也可以发布更复杂的消息类型。
chatter_pub.publish(msg);
  • 现在我们已经向所有连接到chatter topic的节点发送了消息。
ROS_INFO("%s", msg.data.c_str());
  • ROS_INFO和类似的函数用来替代printf/cout.
  • 参考rosconsole documentation以获得更详细的信息。
ros::spinOnce();
  • 在这个例子中并不是一定要调用ros::spinOnce(),因为我们不接受回调。
  • 然而,如果你想拓展这个程序,却又没有在这调用ros::spinOnce(),你的回调函数就永远也不会被调用。
  • 所以,在这里最好还是加上这一语句。
loop_rate.sleep();
  • 这条语句是调用ros::Rate对象来休眠一段时间以使得发布频率为10hz。

  • 对上边的内容进行一下总结:

    • 初始化ROS系统

    • 在ROS网络内广播我们将要在chatter topic上发布std_msgs/String消息

    • 以每秒10次的频率在chatter上发布消息

    • 接下来我们要编写一个节点来接收消息。

编写订阅器节点

源代码

  • 在beginner_tutorials package目录下创建src/listener.cpp文件,并粘贴如下代码:
#include "ros/ros.h"
#include "std_msgs/String.h"

/**
 * This tutorial demonstrates simple receipt of messages over the ROS system.
 */
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
  ROS_INFO("I heard: [%s]", msg->data.c_str());
}

int main(int argc, char **argv)
{
  /**
   * The ros::init() function needs to see argc and argv so that it can perform
   * any ROS arguments and name remapping that were provided at the command line. For programmatic
   * remappings you can use a different version of init() which takes remappings
   * directly, but for most command-line programs, passing argc and argv is the easiest
   * way to do it.  The third argument to init() is the name of the node.
   *
   * You must call one of the versions of ros::init() before using any other
   * part of the ROS system.
   */
  ros::init(argc, argv, "listener");

  /**
   * NodeHandle is the main access point to communications with the ROS system.
   * The first NodeHandle constructed will fully initialize this node, and the last
   * NodeHandle destructed will close down the node.
   */
  ros::NodeHandle n;

  /**
   * The subscribe() call is how you tell ROS that you want to receive messages
   * on a given topic.  This invokes a call to the ROS
   * master node, which keeps a registry of who is publishing and who
   * is subscribing.  Messages are passed to a callback function, here
   * called chatterCallback.  subscribe() returns a Subscriber object that you
   * must hold on to until you want to unsubscribe.  When all copies of the Subscriber
   * object go out of scope, this callback will automatically be unsubscribed from
   * this topic.
   *
   * The second parameter to the subscribe() function is the size of the message
   * queue.  If messages are arriving faster than they are being processed, this
   * is the number of messages that will be buffered up before beginning to throw
   * away the oldest ones.
   */
  ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);

  /**
   * ros::spin() will enter a loop, pumping callbacks.  With this version, all
   * callbacks will be called from within this thread (the main one).  ros::spin()
   * will exit when Ctrl-C is pressed, or the node is shutdown by the master.
   */
  ros::spin();

  return 0;
}

代码解释

  • 下面我们将逐条解释代码,当然,之前解释过的代码就不再赘述了。
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
  ROS_INFO("I heard: [%s]", msg->data.c_str());
}
  • 这是一个回调函数,当消息到达chatter topic的时候就会被调用。
  • 消息是以 boost shared_ptr指针的形式传输,这就意味着你可以存储它而又不需要复制数据
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
  • 告诉master我们要订阅chatter topic上的消息。
  • 当有消息到达topic时,ROS就会调用chatterCallback()函数。
  • 第二个参数是队列大小,以防我们处理消息的速度不够快,在缓存了1000个消息后,再有新的消息到来就将开始丢弃先前接收的消息。
  • NodeHandle::subscribe()返回ros::Subscriber对象,你必须让它处于活动状态直到你不再想订阅该消息。
  • 当这个对象销毁时,它将自动退订上的消息。
  • 有各种不同的NodeHandle::subscribe()函数,允许你指定类的成员函数,甚至是Boost.Function对象可以调用的任何数据类型。roscpp overview 提供了更为详尽的信息。
ros::spin();
  • ros::spin()进入自循环,可以尽可能快的调用消息回调函数。

  • 如果没有消息到达,它不会占用很多CPU,所以不用担心。一旦ros::ok()返回FALSE,ros::spin()就会立刻跳出自循环。

  • 这有可能是ros::shutdown()被调用,或者是用户按下了Ctrl-C,使得master告诉节点要shutdown。

  • 也有可能是节点被人为的关闭。

  • 还有其他的方法进行回调,但在这里我们不涉及。

  • 想要了解,可以参考roscpp_tutorials package里的一些demo应用。

  • 需要更为详尽的信息,参考roscpp overview。

  • 下边,我们来总结一下:

    • 初始化ROS系统
    • 订阅chatter topic
    • 进入自循环,等待消息的到达
    • 当消息到达,调用chatterCallback()函数

编译节点

  • 之前教程中使用catkin_create_pkg创建了package.xml 和 CMakeLists.txt 文件。
  • 生成的CMakeLists.txt看起来应该是这样(在Creating Msgs and Srvs教程中的修改和未被使用的注释和例子都被移除了):
cmake_minimum_required(VERSION 2.8.3)
project(beginner_tutorials)

## Find catkin and any catkin packages
find_package(catkin REQUIRED COMPONENTS roscpp rospy std_msgs genmsg)

## Declare ROS messages and services
add_message_files(DIRECTORY msg FILES Num.msg)
add_service_files(DIRECTORY srv FILES AddTwoInts.srv)

## Generate added messages and services
generate_messages(DEPENDENCIES std_msgs)

## Declare a catkin package
catkin_package()
  • 在CMakeLists.txt文件末尾加入几条语句:

    include_directories(include ${catkin_INCLUDE_DIRS})

    add_executable(talker src/talker.cpp)
    target_link_libraries(talker ${catkin_LIBRARIES})

    add_executable(listener src/listener.cpp)
    target_link_libraries(listener ${catkin_LIBRARIES})

  • 结果,CMakeLists.txt文件看起来像这样:

cmake_minimum_required(VERSION 2.8.3)
project(beginner_tutorials)

## Find catkin and any catkin packages
find_package(catkin REQUIRED COMPONENTS roscpp rospy std_msgs genmsg)

## Declare ROS messages and services
add_message_files(FILES Num.msg)
add_service_files(FILES AddTwoInts.srv)

## Generate added messages and services
generate_messages(DEPENDENCIES std_msgs)

## Declare a catkin package
catkin_package()

## Build talker and listener
include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(talker src/talker.cpp)
target_link_libraries(talker ${catkin_LIBRARIES})
add_dependencies(talker beginner_tutorials_generate_messages_cpp)

add_executable(listener src/listener.cpp)
target_link_libraries(listener ${catkin_LIBRARIES})
add_dependencies(listener beginner_tutorials_generate_messages_cpp)
  • 这会生成两个可执行文件, talker 和 listener, 默认存储到devel space目录

  • 具体是在~/catkin_ws/devel/lib/ 中.

  • 现在要为可执行文件添加对生成的消息文件的依赖:

add_dependencies(talker beginner_tutorials_generate_messages_cpp)
  • 这样就可以确保自定义消息的头文件在被使用之前已经被生成。因为catkin把所有的package并行的编译,所以如果你要使用其他catkin工作空间中其他package的消息,你同样也需要添加对他们各自生成的消息文件的依赖。
  • 当然,如果在Groovy版本下,你可以使用下边的这个变量来添加对所有必须的文件依赖:
add_dependencies(talker ${catkin_EXPORTED_TARGETS})
  • 你可以直接调用可执行文件,也可以使用rosrun来调用他们。他们不会被安装到’ /bin’路径下,因为那样会改变系统的PATH环境变量。如果你确定要将可执行文件安装到该路径下,你需要设置安装目标,请参考catkin/CMakeLists.txt

  • 需要关于CMakeLists.txt更详细的信息,请参考catkin/CMakeLists.txt

  • 现在运行 catkin_make:

# In your catkin workspace
$ catkin_make  
  • 注意:如果你是添加了新的package,你需要通过–force-cmake选项告诉catkin进行强制编译。
  • 参考catkin/Tutorials/using_a_workspace#With_catkin_make.

您必须 登录 才能发表评论!